Date & Time:
November 26, 2018 3:00 pm – 4:30 pm
11/26/2018 03:00 PM 11/26/2018 04:30 PM America/Chicago Niv Dayan: Scaling Write-Intensive Key-Value Stores

In recent years, the log-structured merge-tree (LSM-tree) has become the mainstream core data structure used by key-value stores to ingest and persist data quickly. LSM-tree enables fast writes by buffering incoming data in memory and flushing it as independent sorted batches to storage whenever the buffer is full. To enable fast reads, LSM-tree sort-merges batches in storage to restrict the number that reads have to search, and it also uses in-memory Bloom filters to enable point reads to probabilistically skip accessing batches that do not contain a target entry. In this talk, we show that such LSM-tree based designs do not scale well: as the data size increases, both reads and writes take increasingly long to execute. We pinpoint the problem to suboptimal core design: the Bloom filters have been attached to LSM-tree as an afterthought and are therefore not optimized to minimize the overall probability of access to storage. Point reads are therefore unnecessarily expensive. To compensate, more merging than necessary has to take place thereby making writes unnecessarily expensive. As a part of the CrimsonDB project at the Harvard DasLab, we developed two insights to address this problem. Firstly, we show that the optimal approach for allocating Bloom filters given any amount of available memory resources is to assign significantly lower false positive rates to smaller data batches. This shaves a logarithmic factor from point read cost thereby allowing key-value stores to scale better in terms of reads. Secondly, having lower false positive rates for smaller batches allows to merge newer data more lazily without compromising point read cost. This allows eliminating most of the merge overheads of LSM-tree thereby improving the scalability of writes. We close by describing a higher-level lessons from our work: while data structure design up until today has focused on the cost balance between reads and writes, the inclusion of memory utilization as a direct additional optimization objective opens up new avenues for asymptotic improvements, which studying reads and writes in isolation could not have revealed.

Niv Dayan

Niv Dayan is a postdoc at the Data Systems Lab at Harvard since September 2015. Before that he was a PhD student at the IT University of Copenhagen. Niv works at the intersection of systems and theory for designing efficient data storage. His current work is towards identifying and mapping the fundamentally best scalability trade-offs that are possible to achieve for key-value stores. His past work includes data structure design for internal metadata management in SSDs. holds a Visiting Scientist position at the University of Tennessee Knoxville since 2011.

Related News & Events

Video

How artists can protect their work from AI | Dr. Heather Zheng | TEDxChicago

Nov 05, 2025
figure detailing how net diffusion works
UChicago CS News

AI-Powered Network Management: GATEAU Project Advances Synthetic Traffic Generation

Oct 29, 2025
girl with robot
UChicago CS News

Sebo Lab: Programming robots to better interact with humans

Oct 28, 2025
Inside the Lab icon
Video

Inside The Lab: How Can Robots Improve Our Lives?

Oct 27, 2025
headshot
UChicago CS News

UChicago CS Student Awarded NSF Graduate Research Fellowship

Oct 27, 2025
LLM graphic
UChicago CS News

Why Can’t Powerful LLMs Learn Multiplication?

Oct 27, 2025
headshot
UChicago CS News

Celebrating Excellence in Human-Computer Interaction: Yudai Tanaka Named 2025 Google North America PhD Fellow

Oct 23, 2025
best demo award acceptance
UChicago CS News

Shape n’ Swarm: Hands-On, Shape-Aware Generative Authoring for Swarm User Interfaces Wins Best Demo at UIST 2025

Oct 22, 2025
gas example
UChicago CS News

Redirecting Hands in Virtual Reality With Galvanic Vestibular Stimulation: UChicago Lab to Present First-of-Its-Kind Work at UIST 2025

Oct 13, 2025
prophet arena explanation
UChicago CS News

Breaking New Ground in Machine Learning and AI: New Platform Prophet Arena Redefines How We Evaluate AI’s Intelligence

Oct 13, 2025
Fred Chong accepting award
UChicago CS News

University of Chicago’s EPiQC Wins Prestigious IEEE Synergy Award for Quantum Computing Collaboration

Oct 06, 2025
UIST collage
UChicago CS News

UChicago CS Researchers Expand the Boundaries of Interface Technology at UIST 2025

Sep 26, 2025
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube